Dynamics of Synergetic Systems
Proceedings of the International Symposium on Synergetics, Bielefeld,
Fed. Rep. of Germany, September 24 – 29, 1979
Springer
Series in Synergetics, Vol. 6
1980,
Springer-Verlag Berlin, ISBN 3-540-09918-2
Editor:
Prof. Dr. Hermann
Haken
Institut fŸr
Theoretische Physik der UniversitŠt Stuttgart
Pfaffenwaldring 57/IV
D-7000 Stuttgart, Fed. Rep. of Germay
Part I: Introduction
H. Haken: Lines of developments of synergetics
Part II: Equilibrium phase transitions
H.E. Stanley, A. Coniglio, W. Klein, H. Nakanashi, S. Redner, P.J.
Reynolds, G. Shlifer (Center for Polymer Studies and Dept. of Physics, Boston
University, Boston, MA 02215): Critical phenomena: past, present and ÒfutureÓ
D.E. Miller, R.
Beckmann, F. Karsch (FakultŠt fŸr Physik, UniversitŠt Bielefeld, D-4800
Bielefeld): Critical properties of relativistic bose gases
Part III:
Nonequilibrium phase transitions
P. Bšsiger, E. Brun, D. Meier (Institute of Physics, University of
Zurich, CH-8001 Zurich): Collective effects in rasers
H. Haug, S.W.
Koch (Institut fŸr Theoretische Physik der UniversitŠt Frankfurt, D-6000
Frankfurt/ Main): Nonequilibrium phase transitions in highly excited
semiconductors
W. Horsthemke
(Service de Chimie Physique II, UniversitŽ Libre de Bruxelles, B-1050 Brussels):
Nonequilibrium transitions induced by external white and coloured noise
Part IV:
Spatio-temporal organization of chemical processes
M.L. Smoes (Dept. of Chemistry, University of Michigan, Ann Arbor, MI
48109): Chemical waves in the oscillatory Zhabotinskii System. A transitions
from temporal to spatio-temporal organization
P.C. Fife (Mathematics Dept., University of Arizona, Tucson, AZ 85721):
Propagating waves and target patterns in chemical systems
L. Arnold (Fachbereich Mathematik, Forschungsschwerpunkt Dynamische
Systeme, UniversitŠt Bremen, D-2800 Bremen 33): On the consistency of the
mathematical models of chemical reactions
A. Nitzan (Dept. of Chemistry, Tel Aviv University, Tel Aviv, Israel):
The critical behaviour of nonequilibrium transitions in reacting diffusing
systems, p. 119
Part V:
Turbulence and chaos
Y. Kuramoto (Dept. of Physics, University of Kyoto, Kyoto 606, Japan):
Diffusion-induced chemical turbulence
O.E. Ršssler (Institute for Physical and Theoretical Chemistry,
University of TŸbingen, D-7400 TŸbingen, and Institute for Theoretical Physics,
University of Stuttgart, D-7000 Stuttgart): Chaos and turbulence
Part VI: Self-organization of biological macromolecules
P. Schuster
(Institut fŸr Theoretische Chemie und Strahlenchemie, UniversitŠt Wien, A-1090
Wien); K. Sigmund (Institut fŸr Mathematik, UniversitŠt Wien, A-1090 Wien):
Self-organization of biological macromolecules and evolutionary stable
strategies
P. Schuster, K. Sigmund: A mathematical model of the hypercycle
Part VII:
Dynamics of multi-unit systems
A. Babloyantz (UniversitŽ Libre de Bruxelles, Chimie-Physique II, B-1050
Bruxelles): Self-organization phenomena in multiple unit systems
H.G. Othmer (Dept. of Mathematics, Rutgers University, New Brunswick,
NJ): Synchronized and differentiated modes of cellular dynamics
R. LefŽver (Chimie Physique II, UnivesitŽ Libre de Bruxelles, B-1050
Bruxelles): Dynamics of cell-mediated immune response
Part VIII:
Models of psychological and social behaviour
J.S. Nicolis (Dept. of Electrical Engineering, University of Patras,
Patras, Greece): Bifurcations in cognitive networks: a paradigm of
self-organization via desynchronization
W. Weidlich, G. Haag (Institut fŸr Theoretische Physik der UniversitŠt
Stuttgart, D-7000 Stuttgart): Dynamics of interacting groups in society with
application to the migration of population
Part IX:
Mathematical concepts and methods
T. Poston (DŽpt. de Physique ThŽorique, UniversitŽ de Genve, CH-1211
Genve 4): Structural instability in systems modelling
J.W. Turner (FacultŽ des Sciences, UniversitŽ Libre de Bruxelles, B-1050
Bruxelles): Stationary and time dependent solutions of master equations in
several variables
C.W. Gardiner (Institut fŸr Theoretische Physik der UniversitŠt Stuttgart,
D-7000 Stuttgart 8, and Physics Dept., University of Waikato, Hamilton, NZ):
Poissonian techniques for chemical master equations