Dynamics of Synergetic Systems

Proceedings of the International Symposium on Synergetics, Bielefeld, Fed. Rep. of Germany, September 24 – 29, 1979

Springer Series in Synergetics, Vol. 6

1980, Springer-Verlag Berlin, ISBN 3-540-09918-2




Prof. Dr. Hermann Haken

Institut fŸr Theoretische Physik der UniversitŠt Stuttgart

Pfaffenwaldring 57/IV

D-7000 Stuttgart, Fed. Rep. of Germay




Part I: Introduction


H. Haken: Lines of developments of synergetics



Part II: Equilibrium phase transitions


H.E. Stanley, A. Coniglio, W. Klein, H. Nakanashi, S. Redner, P.J. Reynolds, G. Shlifer (Center for Polymer Studies and Dept. of Physics, Boston University, Boston, MA 02215): Critical phenomena: past, present and ÒfutureÓ


D.E. Miller, R. Beckmann, F. Karsch (FakultŠt fŸr Physik, UniversitŠt Bielefeld, D-4800 Bielefeld): Critical properties of relativistic bose gases



Part III: Nonequilibrium phase transitions


P. Bšsiger, E. Brun, D. Meier (Institute of Physics, University of Zurich, CH-8001 Zurich): Collective effects in rasers


H. Haug, S.W. Koch (Institut fŸr Theoretische Physik der UniversitŠt Frankfurt, D-6000 Frankfurt/ Main): Nonequilibrium phase transitions in highly excited semiconductors


W. Horsthemke (Service de Chimie Physique II, UniversitŽ Libre de Bruxelles, B-1050 Brussels): Nonequilibrium transitions induced by external white and coloured noise



Part IV: Spatio-temporal organization of chemical processes


M.L. Smoes (Dept. of Chemistry, University of Michigan, Ann Arbor, MI 48109): Chemical waves in the oscillatory Zhabotinskii System. A transitions from temporal to spatio-temporal organization


P.C. Fife (Mathematics Dept., University of Arizona, Tucson, AZ 85721): Propagating waves and target patterns in chemical systems


L. Arnold (Fachbereich Mathematik, Forschungsschwerpunkt Dynamische Systeme, UniversitŠt Bremen, D-2800 Bremen 33): On the consistency of the mathematical models of chemical reactions


A. Nitzan (Dept. of Chemistry, Tel Aviv University, Tel Aviv, Israel): The critical behaviour of nonequilibrium transitions in reacting diffusing systems, p. 119



Part V: Turbulence and chaos


Y. Kuramoto (Dept. of Physics, University of Kyoto, Kyoto 606, Japan): Diffusion-induced chemical turbulence


O.E. Ršssler (Institute for Physical and Theoretical Chemistry, University of TŸbingen, D-7400 TŸbingen, and Institute for Theoretical Physics, University of Stuttgart, D-7000 Stuttgart): Chaos and turbulence



Part VI: Self-organization of biological macromolecules


P. Schuster (Institut fŸr Theoretische Chemie und Strahlenchemie, UniversitŠt Wien, A-1090 Wien); K. Sigmund (Institut fŸr Mathematik, UniversitŠt Wien, A-1090 Wien): Self-organization of biological macromolecules and evolutionary stable strategies


P. Schuster, K. Sigmund: A mathematical model of the hypercycle



Part VII: Dynamics of multi-unit systems


A. Babloyantz (UniversitŽ Libre de Bruxelles, Chimie-Physique II, B-1050 Bruxelles): Self-organization phenomena in multiple unit systems


H.G. Othmer (Dept. of Mathematics, Rutgers University, New Brunswick, NJ): Synchronized and differentiated modes of cellular dynamics


R. LefŽver (Chimie Physique II, UnivesitŽ Libre de Bruxelles, B-1050 Bruxelles): Dynamics of cell-mediated immune response



Part VIII: Models of psychological and social behaviour


J.S. Nicolis (Dept. of Electrical Engineering, University of Patras, Patras, Greece): Bifurcations in cognitive networks: a paradigm of self-organization via desynchronization


W. Weidlich, G. Haag (Institut fŸr Theoretische Physik der UniversitŠt Stuttgart, D-7000 Stuttgart): Dynamics of interacting groups in society with application to the migration of population



Part IX: Mathematical concepts and methods


T. Poston (DŽpt. de Physique ThŽorique, UniversitŽ de Genve, CH-1211 Genve 4): Structural instability in systems modelling


J.W. Turner (FacultŽ des Sciences, UniversitŽ Libre de Bruxelles, B-1050 Bruxelles): Stationary and time dependent solutions of master equations in several variables


C.W. Gardiner (Institut fŸr Theoretische Physik der UniversitŠt Stuttgart, D-7000 Stuttgart 8, and Physics Dept., University of Waikato, Hamilton, NZ): Poissonian techniques for chemical master equations